
Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 1 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 1

Peter’s Input Security

Installation Guide

Click on any of these topics to jump to them:

 Adding Peter’s Input Security to a Web Application

 Add Code Into Global.asax

 Configure for Your Database

 Configure for Reporting

 Configure for Logging

 Securing The Web Application

 Showing User Friendly Pages Instead of Exceptions

 Logging Exceptions

 Establishing Character Encoding to Limit Script Injection

 Securing Each Page

 Troubleshooting

 Table of Contents

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 2 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 2

Table of Contents

PETERBLUM.COM AND SECURITY 3

What This Software Will and Will Not Do 3

License Information 4

Platform Support 4

TECHNICAL SUPPORT AND OTHER ASSISTANCE 5
Installation and User’s Guides 5
PeterBlum.Com MessageBoard 5
Getting Product Updates 5
Technical Support 5

OVERVIEW 6

Terminology 6

ADDING PETER’S INPUT SECURITY TO A WEB APPLICATION 7

Add Code Into Global.asax 8

Configure for Your Database 9

Configure for Reporting 10
Set up the Reporting Folder 11
Restricting Server Resource Usage 13

Configure for Logging 19
Steps to Configure For Logging 20
Defaults for Tracking Attacks 21
Defaults for Tracking Errors and Exceptions 23
Using the Windows Event Log 25
Using Text File Logging 27
Using Email 29
Using Your Own Logging Code 31
Customize Logging and Response By Attack Type 34

Securing The Web Application 36
Showing User Friendly Pages Instead of Exceptions 37
Logging Exceptions 38
Establishing Character Encoding to Limit Script Injection 40

Securing Each Page 41

TROUBLESHOOTING 42

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 3 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 3

PeterBlum.com and Security
PeterBlum.com is not a computer security company and does not claim expertise in aspects of security outside of what
Peter’s Input Security addresses. Peter Blum is a programmer who faces the same challenges as other ASP.NET
programmers. As Microsoft has promoted the issues behind SQL and script injection attacks, they placed much of the burden
on the programmers to solve “input validation”. Peter has been able to focus on the problem for an extended period of time to
come up with a viable commercial solution for ASP.NET websites. Peter’s background includes over 20 years of commercial
desktop application development, with extensive OOP, ASP.NET, regex, and database skills. This has been combined with
the published knowledge of others in books and articles, many of which you see referenced in this User’s Guide, to design
Peter's Input Security.

You should expect PeterBlum.com to provide technical support on specific product features and usage.

You should not expect PeterBlum.com to provide technical support on general input security issues. PeterBlum.com
recommends you seek qualified expertise to answer your general input security issues.

What This Software Will and Will Not Do
Peter’s Input Security is designed to greatly reduce the ability for a hacker to attack your website through SQL injection,
script injection (aka “Cross Site Scripting”) and tampering with inputs from the following sources: HTML form data entry
fields, query string parameters and cookies. Even at its highest settings, it cannot guarantee 100% protection. Hackers
continue to find new ways to attack websites.

This software can only provide its best protection when you carefully follow the directions supplied.

 You are responsible for neutralizing data that was not blocked by this software. The software provides some tools based
on a common knowledge of how to defend against hackers. The User’s Guide provides additional suggestions.

 Peter’s Input Security’s validators only look at the data from HTML form data entry fields, hidden fields, query string
parameters and cookies. Any other form of input is your responsibility to identify and protect. See the section “Securing
a Web Service And Other Inputs” in the User’s Guide.

 Peter’s Input Security can detect and block most SQL and script injection attacks. However, the settings are highly
configurable, allowing you to turn off some or all of the protection. You must write code to neutralize the attacks that get
past Peter's Input Security’s detection code.

 Peter’s Input Security can detect and block some forms of input tampering. You are responsible for detecting, blocking
and neutralizing any other case.

 There are many more ways hackers can attack your website. Consult an expert to learn more and determine the best
course of action.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 4 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 4

License Information
This document includes information for the Peter’s Input Security module in Peter’s Data Entry Suite. If you licensed the
complete Suite or the “Peter’s Input Security” module, you have all features found in this User’s Guide, unless otherwise
noted.

Platform Support
This product was written for Microsoft ASP.NET. It supports all versions from 1.0 up. It includes assemblies specific to
ASP.NET 1.x and ASP.NET 2. It is compatible with all browsers, scaling down automatically when the browser has a
limitation. In some cases, that means the control turns off its client-side functionality or turns itself off entirely.

This product is designed to scale properly even when the Page’s ClientTarget property causes the HttpBrowserCapabilities
(Request.Browser) to falsely state the browser. In other words, you can’t fool these controls with an upLevel clientTarget.
This is absolutely necessary because feeding the wrong browser will generate incorrect client side scripts giving the user’s
scripting errors. It was also considered a requirement to hide features that didn’t work on the browser to give the user the best
interface. For more, see “Browser Support” in the General Features Guide.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 5 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Technical Support and Other Assistance
PeterBlum.com offers free technical support. This is just one of the ways to solve problems. This section provides all of your
options and explains how technical support is set up.

Installation and User’s Guides
These guides are large because they are loaded with content. In many cases, the answers are in them. Both guides include
Troubleshooting sections. This information will often save you time.

PeterBlum.Com MessageBoard
Use the message board at http://groups.yahoo.com/groups/peterblum to discuss issues and ideas with other users.

Getting Product Updates
As minor versions are released (4.0.1 to 4.0.2 is a minor version release), you can get them for free. Go to
http://www.peterblum.com/DES/Home.aspx. It will identify the current version at the top of the page. You can read about all
changes in the release by clicking “Release History”. Click “Get This Update” to get the update. You will need the serial
number and email address used to register for the license.

As upgrades are offered (v4.0 to v4.1), PeterBlum.com will determine if there is an upgrade fee at the time. You will be
notified of upgrades and how to retrieve them through email.

PeterBlum.com often adds new functionality into minor version releases.

Technical Support
You can contact Technical Support at this email address: Support@PeterBlum.com. I (Peter Blum) make every effort to
respond quickly with useful information and in a pleasant manner. As the only person at PeterBlum.com, it is easy to imagine
that customer support questions will take up all of my time and prevent me from delivering to you updates and cool new
features. As a result, I request the following of you:

 Please review the User’s or Installation Guide, including their Troubleshooting sections, first.

 Please try to include as much information about your web form or the problem as possible. I need to fully
understand what you are seeing and how you have set things up.

 If you have written code that interacts with my controls or classes, please be sure you have run it through a debugger
to determine that it is working in your code or the exact point of failure and error it reports.

 I am not a security expert. Tech support cannot provide support on general security issues. See “PeterBlum.com
and Security”.

 I cannot offer general ASP.NET mentoring. If your problem is due to your lack of knowledge in ASP.NET, I will
give you some initial help and then ask you to find assistance from the many tools available to the .Net community.
They include:

o Books

o http://www.GotDotNet.com - for training and many samples on using ASP.NET

o www.asp.net forums and tutorials

o Microsoft’s usenet newsgroups such as microsoft.public.dotnet.framework.aspnet. See
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet

o Google searches. (I virtually live in Google as I try to figure things out with ASP.NET.)
http://www.Google.com. Don’t forget to search the “Groups” section of Google!

o http://aspnet.4guysfromrolla.com/, http://www.dotnetjunkies.com, http://www.aspalliance.com/

As customers identify issues and shortcomings with the software and its documentation, I will consider updating these areas.

http://groups.yahoo.com/groups/peterblum�
http://www.peterblum.com/DES/Home.aspx�
mailto:Support@PeterBlum.com�
http://www.gotdotnet.com/�
http://www.asp.net/�
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet�
http://www.google.com/�
http://aspnet.4guysfromrolla.com/�
http://www.dotnetjunkies.com/�
http://www.aspalliance.com/�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 6 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Overview
This guide provides detailed step-by-step instructions to setting up Peter’s Input Security. There are three phases to
installation:

1. Adding Peter’s Input Security to a Web Application

2. Securing The Web Application

3. Securing Each Page

Use the links to jump around this document. Adobe Reader offers a Previous View command to return to the link. Look for
this in the Adobe Reader (shown v6.0):

Terminology
In this documentation, the term [ProductFolder] refers to the folder where you installed Peter’s Data Entry Suite. For
example, C:\Program Files\Peters Data Entry Suite v4.0.0.

The term [webapplicationroot] refers to the folder that contains the web application on your server. For example, the
domain http://localhost is usually in C:\inetpub\wwwroot. Web applications are usually in a subfolder. For
example, the web app “MyWebApp” is in C:\inetpub\wwwroot\MyWebApp.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 7 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Adding Peter’s Input Security to a Web Application
Security is a big task. Unfortunately, there is no software that can instantly block what you don’t want while permitting what
you do. (That would be the “Holy Grail” of input security.) Peter’s Input Security has been designed to give you the
security that works correctly for you. But it comes with some effort. Yet, this effort is far smaller than if you had to do it
yourself. With Peter’s Input Security, you have step-by-step guidance to implement security and tools to get many of these
tasks done quickly.

There are several major themes to input security:

 Blocking exceptions and diagnostic errors from getting in the hands of hackers which they would exploit

 Logging those exceptions for your own use

 Detecting and blocking hacking attempts on every input of every page in your web application

 Logging the hacking attempts to keep you informed

To accomplish this, Peter’s Input Security gives you several new tools, all documented in the Input Security User’s
Guide:

 Security Analysis Report for determining how secure each page is

 PageSecurityValidator for detecting and blocking all forms of attacks on a page

 FieldSecurityValidator for detecting and blocking SQL injection and script injection attacks on an individual field

 LogAndRespond Engine for logging attacks, exceptions, and errors. It also can redirect to another page or throw an
exception after logging.

 SQL Injection Detection Engine for detecting SQL injection. It is used by the two validators. You should customize it
to understand your database.

 Script Injection Detection Engine for detecting script injection. You may customize its filters as you explore the
software.

This section will get Peter’s Input Security set up within a web application. Here are the tasks ahead:

Click on any of these topics to jump to them:

 Add Code Into Global.asax

 Configure for Your Database

 Configure for Reporting

 Configure for Logging

 Securing The Web Application

 Securing Each Page

Apply each of these in the above order. Do this on each web application.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 8 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Add Code Into Global.asax
Peter’s Input Security uses the Global.asax file to set up numerous global settings. It includes the For Global class.cs
or For Global class.vb files with code to copy and paste into your Global.asax file.

1. Open the Global.asax file in an editor. If you use code behind files, open its code behind file.

2. Locate or create the Application_BeginRequest()method.

[C#]

protected void Application_BeginRequest(Object sender, EventArgs e)
{
}

[VB]

Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)

End Sub

Note: Users of Professional Validation And More previously called the SetupVisualInputSecurity() from within
Application_Start. That code can remain until you migrate to IIS 7, which requires the above technique.

3. Open the For Global class.cs or For Global class.vb file from [ProductFolder]\Input Security in an editor.

 If you use C#, use For Global class.cs

 If you use Visual Basic.Net, use For Global class.vb

 If you use another language, you should be able to adapt the code from one of these files.

4. Follow the directions within those files to update your Global class within the Global.asax file.

 Add code starting at the SetupInputSecurity() method through the end of the file.

 Add a call to SetupInputSecurityFromPage() in Application_BeginRequest().

[C#]

protected void Application_BeginRequest(Object sender, EventArgs e)
{
 SetupInputSecurityFromPage();
}

[VB]

Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 SetupInputSecurityFromPage()
End Sub

WARNING: Do not call the method SetupInputSecurity() from BeginRequest. SetupInputSecurity() loads all configuration
settings of Peter’s Input Security. That should never happen on every page request!

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 9 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Configure for Your Database
Peter’s Input Security needs to know about your database in order to detect SQL injection attacks against it. You can skip
this section if you are not using a database.

In this section, you will identify:

 The type of database that you are using. This will allow Peter’s Input Security to detect some of the table and stored
procedure names that are pre-installed with your database and often attacked by hackers.

 A list of your own table names and some of the field names likely to be used by hackers. This is used to identify SQL
statements, especially those that may be attacks.

 The name of your database. Hackers often discover this name early in their attacks and use it to “drill down” into your
database schema.

1. Open the Global.asax file in an editor. If you use code behind files, open its code behind file.

2. Within the SetupInputSecurity() method, locate this line. (It’s near the top):

PeterBlum.DES.Security.Globals.UseConfigFiles(
 PeterBlum.DES.Security.DatabaseTypes.None);

3. If you are using a database, change the parameter of UseConfigFiles() to identify the database. The enumerated
type PeterBlum.DES.Security.DatabaseTypes has these values:

o MSSql – Microsoft SQL Server

o MSAccess – Microsoft Access

o Oracle

o MySql

o None – Use this when no other item applies.

4. Open the custom.config file in an editor. The file is in the [webapplicationfolder]\DES\Security Config Files
folder of your web application.

5. Locate the <databaseelementnames> section.

6. Add the name of your database.

<item action="add">database name</item>

This example uses the Northwind database supplied with MS SQL Server.

<item action="add">Northwind</item>

7. Add the names of tables from your database. You can choose only those with data that must be protected or all of them.

<item action="add">name</item>

8. Add the names of the more important fields in your database. Primary key fields and fields used in JOINS are good
choices, especially if they are likely to be used by hackers.

Note: Larger lists of items in the <databaseelementnames> section will use more CPU time. You must determine
the right balance between a complete list and fast processing.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 10 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Configure for Reporting
The Security Analysis Report is an important tool within Peter’s Input Security. It identifies any security risks on the inputs
of each page. You will use it to design security on each page. (It is used during development, not in production.)

This report outputs HTML files into a folder that you specify here. Additionally, you can set rules that prevent it from
running, such as on a production server. The settings are made within the <appSettings> section of the web.config file.

Note: By removing the path to the folder, you turn off reports completely. When you deploy to servers that should not run
reports, be sure to remove the path to the folder in the web.config file or programmatically. You can also specify a list of
servers that permit reports. See “Restrict by Server Name”.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 11 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Set up the Reporting Folder
Reports can be written to any folder on the web server, so long as the folder has rights for the NT account used by ASP.NET.

The report files contain sensitive information. Here are some things to consider:

 They should never appear on a production server. You don’t want to give hackers a chance to read them and learn the
security design of your web pages. When deploying to a production web server, do not set up that server with a Reports
folder or configure your web.config file to point to that file.

 On development and testing servers, consider who in your organization should create and see them. Peter’s Input
Security lets you impose restrictions by location and who should create them.

1. Determine the location of a folder to contain the reporting files. You can put it in any of these places:

 Within your web application

 In a shared folder

 In a private folder

2. Create a folder there. The recommended name is “Security Reports”.

3. Establish the appropriate rights on the folder.

 If this is within the web application, use IIS to restrict to Read rights only.

 Folder permissions should allow the ASP.NET user account to read, write, create and delete files.

 If the folder is not in your web application, you may want to establish it as a shared folder using NT security on the
folder.

4. Establish one of these keys in the <appSettings> section of web.config, identifying the path to the folder.

<add key="DES_Security_ReportVirtualPath" value="[virtual path]" />

<add key="DES_Security_ReportFilePath" value="[actual path]" />

If you do not have an <appSettings> section in your file, click here for details.

 Use DES_Security_ReportVirtualPath when the folder is in the web application. A virtual path is a URL
from the root of the domain folder to the report folder. You can use the tilde (~) as the first character to indicate the
web application.

Note: Never supply a domain name or any URL that refers to a different server.

For example, if your domain is http://localhost, your web application is http://localhost/mywebapp and your report
folder is http://localhost/mywebapp/security reports, use this:

<add key="DES_Security_ReportVirtualPath" value="~/Security Reports" />

You have the option of setting this programmatically during application startup. Assign your path to this
static/shared property: PeterBlum.DES.Security.SecurityAnalysisReport.ReportVirtualPath. It accepts a string.

PeterBlum.DES.Security.SecurityAnalysisReport.ReportVirtualPath =
 "~/Security Reports"

 Use DES_Security_ReportFilePath when the folder is outside of the web application. If you have set up a
shared folder, use a UNC name. Otherwise use a full file path.

Here are examples of each:

<add key="DES_Security_ReportFilePath"
 value="\\mycomputername\security reports" />

<add key="DES_Security_ReportFilePath"
 value="C:\documents and settings\all users\security reports" />

You have the option of setting this programmatically during application startup. Assign your path to this
static/shared property: PeterBlum.DES.Security.SecurityAnalysisReport.ReportFilePath. It accepts a string.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfappsettingselement.asp�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 12 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

PeterBlum.DES.Security.SecurityAnalysisReport.ReportFilePath =
 "\\mycomputername\security reports"

C# Users: Remember that the \ character is a special symbol. Either add two of them for each slash or put a @
character in front of the string like this: @"the string".

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 13 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Restricting Server Resource Usage
When enabled, a page will run a report each time the page is generated. The report takes some time and creates a unique file.
This places a higher than usual demand on server resources. Peter’s Input Security can be configured to restrict resource
usage by establishing these rules to allow a report to run:

 Server name

 IP Address of the user

 The page or folder requested

 Expiration date

Note: Each of these is set in the web.config file. ASP.NET automatically restarts the application after web.config is saved.

Click on any of these topics to jump to them:

 Restrict by Server Name

 Restrict Users by IP Address

 Restrict to specific pages or folders

 Letting individual users control pages that output reports

 Stop reporting after a certain date

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 14 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Restrict by Server Name

When you deploy your web application to another server, you must determine if reports should still be enabled. If you do not
want them to run, remove the DES_Security_ReportFilePath or DES_Security_ReportVirtualPath keys
from your web.config file. What happens if you forget?

Use the DES_Security_ServersAllowed key in the <appSettings> section of web.config to identify a list of
server names that allow reports to run. When ServersAllowed is not supplied, there are no server name restrictions.

Define server names in a semicolon delimited string like this:

<add key="DES_Security_ServersAllowed" value="computername1;computername2" />

The software matches these strings to the System.Environment.MachineName property. It uses a case insensitive match.

You can include a partial computer name. For example, if you have servers named “Server001”, “Server002” and
“Server003”, you can specify “Server”.

You have the option of setting this programmatically during application startup. Assign your path to this static/shared
property: PeterBlum.DES.Security.SecurityAnalysisReport.ServersAllowed. It accepts a string in the same format as
described above.

PeterBlum.DES.Security.SecurityAnalysisReport.ServersAllowed =
 "computername1;computername2"

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 15 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Restrict Users by IP Address

In an environment when several users are accessing the same web application on a server, only a few may be interested in the
report feature. Use the DES_Security_AllowedIPs key in the <appSettings> section of web.config to identify a
list of IP Addresses that can generate a report. When DES_Security_AllowedIPs is not supplied, there are no IP
Address restrictions.

Example with one IP Address:

<add key="DES_Security_AllowedIPs" value="127.0.0.10" />

Multiple IP Addresses can be specified in two ways:

 Semicolon delimited list. For example:

<add key="DES_Security_AllowedIPs" value="127.0.0.10;127.0.0.13" />

 Partial IP address. Only provide the first few segments of the IP address. All IPs matching those segments are used.
Always provide a trailing period. For example:

<add key="DES_Security_AllowedIPs" value="127.0.0." />

You have the option of setting this programmatically during application startup. Assign your path to this static/shared
property: PeterBlum.DES.Security.SecurityAnalysisReport.AllowedIPs. It accepts a string in the same format as
described above.

PeterBlum.DES.Security.SecurityAnalysisReport.AllowedIPs =
 "127.0.0.10;127.0.0.13"

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 16 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Restrict to specific pages or folders

Use the DES_Security_PagePaths key in the <appSettings> section of web.config to identify a list of virtual
paths that will generate reports. When used, any page that does not match to this key will not generate a report.

This property looks at the URL from each request and compares it to the entries you make here. You should omit the domain
part of the URL. For example, to allow only “http://www.mydomain.com/myfolder/myfile.aspx”, enter
“/myfolder/myfile.aspx”.

The value works like there is a wildcard at the end of your text. Suppose you enter “/myfolder” here. This will match to
these URLs: “/myfolder/myfile.aspx” and “/myfolder2/myfile.aspx”. If you want to match to all in a
specific folder, include the terminating “/” like this: “/myfolder/”.

You can use the tilde (~) as the first character to indicate the web application folder. For example, “~/myfolder/”.

You can supply a list of valid page paths, by using semicolon-delimited list. For example,
“~/myfolder/;~/myfolder2/;~/myfolder3/myfile1.aspx”.

This example allows all files in the Accounting folder, all files that begin with Save in the Analysis folder, and a single
specified page in the Prep folder.

<add key="DES_Security_PagePaths"
 value="~/Accounting/;~/Analysis/Save;~/Prep/Collection.aspx" />

You have the option of setting this programmatically during application startup. Assign your path to this static/shared
property: PeterBlum.DES.Security.SecurityAnalysisReport.PagePaths. It accepts a string in the same format as described
above.

PeterBlum.DES.Security.SecurityAnalysisReport.PagePaths =
 "~/Accounting/;~/Analysis/Save;~/Prep/Collection.aspx"

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 17 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Letting individual users control pages that output reports

You can control which pages output reports using either a query string parameter or the Session collection. When these
settings are used, they override the DES_Security_PagePaths key (see above).

To allow a page to report, include the query string parameter “DES_EnableReport=1”. To prevent a report, include the query
string parameter “DES_EnableReport=0”.

To enable all pages that you use programmatically, assign the “DES_EnableReport” key to the Session collection with a
value of true. To disable all pages that you use programmatically, assign the “DES_EnableReport” key to the Session
collection with a value of false. You may want to do this by creating a web page designed to set the Session collection
when it is loaded.

The query string parameter takes precidence over the Session value.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 18 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Stop reporting after a certain date

Use the DES_Security_Expires key in the <appSettings> section of web.config to a date after which reports
will not run. This makes it easy for the user to run some tests without having to remember to shut off the reporting system
later. When DES_Security_Expires is not supplied, there is no expiration date.

The value must be in the format yyyy-MM-dd. This example shows the expiration date on October 4, 2004.

<add key="DES_Security_Expires" value="2004-10-04" />

You have the option of setting this programmatically during application startup. Assign your path to this static/shared
property: PeterBlum.DES.Security.SecurityAnalysisReport.Expires. It accepts a DateTime structure.

PeterBlum.DES.Security.SecurityAnalysisReport.Expires =
 new DateTime(2004, 10, 2)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDateTimeClassTopic.asp�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 19 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Configure for Logging
The Log And Respond Engine logs attacks, errors and exceptions from your application and optionally responds by
redirecting to another page or throwing an exception. Aside from giving you some very desirable information, it helps hide
the real details of an error from a hacker so that they have a harder time creating their attack.

You set up properties on the PeterBlum.DES.Security.LogAndRespond class in the SetupInputSecurity()
method of your Global.asax file.

There are four ways you can record an attack, error or exception: the Windows Event Log, a Text File, through Email, and
using your own logging code. You can use all four if you like. Here are some guidelines:

 Windows Event Log – When you are on a hosted server, you probably do not have access to the Windows Event
Log.

 Text file – Creates a new text file for each date that an attack or error is logged. The same text file will capture all
attacks, errors, and exceptions. Each will be time stamped with a header indicating the type of entry. You can set up
the Windows Event Log to be a backup to text files in case there are errors writing to text files.

 Email – You must have an SMTP server set up and accessible to the System.Web.Mail.SmtpMail object
(ASP.NET 1.x) or System.Net.Mail.SmtpClient object (ASP.NET 2.0) . You can define rules to limit the
number of emails about an attack for a particular IP Address so that you don’t get an email with each attack attempt.
However, you will get emails for every error or exception logged. You can set up the Windows Event Log to be a
backup to emails in case the SmtpMail or SmtpClient object throws an exception indicating the server is down.

 Your own code – You can hook up an event handler to direct the data for an attack, error or exception to your own
code. Perhaps you want to log into your own database, output to an XML text file, or use an email system that does
not use the classes supplied with the .net framework.

Attacks have separate processing rules from errors and exceptions. For example, you may prefer to be emailed about attacks
but only log errors. During this setup process, you will define those rules.

Note: The User’s Guide section “Using The LogAndRespond Engine” covers the class and its supporting properties and
methods in greater detail.

Click on any of these topics to jump to them:

 Steps to Configure For Logging

 Defaults for Tracking Attacks

 Defaults for Tracking Errors and Exceptions

 Using the Windows Event Log

 Using Text File Logging

 Using Email

 Using Your Own Logging Code

 Customize Logging and Response By Attack Type

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebmailsmtpmailclasstopic.asp�
http://msdn2.microsoft.com/library/4971yhhc(en-us,vs.80).aspx�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 20 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Steps to Configure For Logging
You have already set up Global.asax with the SetupInputSecurity()method. It contains numerous settings for
LogAndRespond. They are commented out. The remaining steps will help you decide which to uncomment and modify.

1. Set up properties for logging and responding to attacks on the LogAndRespond.DefaultTrackAttackArgs property.
See “Defaults for Tracking Attacks”.

2. Set up properties for logging and responding to errors and exceptions on the LogAndRespond.DefaultTrackErrorArgs
property. See “Defaults for Tracking Errors and Exceptions”.

3. If you are logging to the Windows Event Log, set up the event log. See “Using the Windows Event Log”.

4. If you are logging to a text file, set up the text file folder. See “Using Text File Logging”.

5. If you are sending emails, set up the System.Web.Mail.SmtpMail object (ASP.NET 1.x) or
System.Net.Mail.SmtpClient object (ASP.NET 2.0 and higher). See “Using Email”.

6. If you are using a your own logging code, set up the LogAndRespond.OnLogAttack and OnLogError properties.

7. The LogAndRespond object offers several other properties to customize how attacks are handled:

Note: These properties only apply when LogAndRespond is called. The Slow Down Manager monitors attacks but
only uses LogAndRespond if you set it up to log an attack with the logfirstattack attribute on the SlowDownRules.
Each time it does that, it is counted as one attack by the LogAndRespond Engine.

 AttackTimeOut (integer) – Number of minutes after an attack is recorded before another attack from the same IP
Address is considered a new attack. Attacks are tracked by IP address. Each IP Address will record a series of
attacks and reset after a delay of this timeout. It defaults to 30 minutes.

 CountBeforeResponse (integer) – Number of attacks from a particular IP Address before either the response
actions occur. Response actions are redirecting to a URL and throwing an exception. It defaults to 1.

Set it above 1 to give the hacker a false sense that they are not being monitored or blocked after they test your site.
You can track their actions and eventually use the responses to forcefully attempt to stop them.

The IP Address count is the total since the web application started up.

 CustomizeTrackAttackArgs (event) – Use this event handler to customize the behavior of logging and response
for each type of attack. See “Customize Logging and Response By Attack Type”.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 21 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Defaults for Tracking Attacks
When tracking attacks, the LogAndRespond class follows rules that you set up in its DefaultTrackAttackArgs property.
By default, all logging and response features are disabled. You set them up in the SetupInputSecurity() method.

The DefaultTrackAttackArgs property is a PeterBlum.DES.Security.TrackAttackArgs class with the
following properties:

 EnableLogging (boolean) – When true, logging is used. You still must set up other properties to determine how
attacks will be logged. There are two types of logging available: the Windows Event Log and text file. It defaults to
false.

 LoggingText (string) – The text to write to either the Windows Event Log or text file. It supports tokens that are
replaced by actual information about the attack. The tokens are as follows:

o {IP} – IP address from Request.ServerVariables["REMOTE_ADDR"]. If ServerVariables identifies a
proxy server through the HTTP_VIA and HTTP_X_FORWARDED_FOR variables, they are also embedded
into this information using the format:

REMOTE_ADDR HTTP_VIA=HTTP_VIA HTTP_X_FORWARDED_FOR=HTTP_X_FORWARDED_FOR

210.123.45.1 HTTP_VIA=210.123.45.1 HTTP_X_FORWARDED_FOR=210.123.45.6

For more information on proxy servers and ways hackers can hide behind them, see
http://www.stayinvisible.com/index.pl/anonymity_of_proxy.

o {IPTOTAL} - Total attacks recorded for this IP Address since the web app was started.

Note: IP Addresses may reflect a number of users hidden behind a proxy server.

o {USERAGENT} – The User Agent describing the browser from
Request.ServerVariables["HTTP_USER_AGENT"].

o {USER} – Logged in user from Context.User.Identity.Name

o {URL} – Complete URL from Request.Url

o {ATTACKTYPE} – The type of attack detected: SQL Injection, Script Injection, or IllegalValue.

o {FIELD} – ID to the field, cookie or querystring parameter that caused this error.

o {INPUTTYPE} – The type of input attacked: Field, Hidden Field, Cookie, or QueryString.

o {DETAILS} – A specific description of what was considered an attack.

o {ERRORCODE} – An error code number associated with the description.

o {DATA} - The text that the user (hacker) entered.

Use the text “\n” to indicate a newline character. While this is C# syntax, VB.net users should use this syntax too.

This property defaults to: “{ATTACKTYPE}\nIP Address: {IP} Total attacks from this
address since app started: {IPTOTAL}\nUser Agent: {USERAGENT}\nSite User:
{USER}\nURL: {URL}\n{INPUTTYPE}: {FIELD}\nError Code: {ERRORCODE}\nError
Details: {DETAILS}\nOffending Text:\n{DATA}”

 EnableEmail (boolean) – When true, emailing notices of attacks is enabled. You must have an SMTP Server set
up and accessible to the System.Web.Mail.SmtpMail object (ASP.NET 1.x) or
System.Net.Mail.SmtpClient object (ASP.NET 2 and higher). It defaults to false.

 EmailFrom (string) – The email address to appear in the From: line of an email. Only one is permitted and it must
be a valid format.

 EmailTo (string) – The email addresses to appear in the To: line of an email. Use a semicolon-delimited list for
multiple addresses. For example: “Jon@mydomain.com;Laura@mydomain.com”

 EmailSubject (string) – The email subject line. It defaults to: “Input validation detected a
possible attack”

http://www.stayinvisible.com/index.pl/anonymity_of_proxy�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebmailsmtpmailclasstopic.asp�
http://msdn2.microsoft.com/library/4971yhhc(en-us,vs.80).aspx�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 22 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

 EmailBody (string) – The body of the email. It supports the same tokens as shown in the LoggingText property.

Use the text “\n” to indicate a newline character. While this is C# syntax, VB.net users should use this syntax too.

This property defaults to: “{ATTACKTYPE}\nIP Address: {IP} Total attacks from this
address since app started: {IPTOTAL}\nUser Agent: {USERAGENT}\nSite User:
{USER}\nURL: {URL}\n{INPUTTYPE}: {FIELD}\nError Code: {ERRORCODE}\nError
Details: {DETAILS}\nOffending Text:\n{DATA}”

 RedirectURL (string) – The URL to a page that should appear when an attack is detected. When "", redirection is
disabled. It defaults to "".

 ExceptionText (string) – When assigned and RedirectURL is not assigned, throw a
PeterBlum.DES.Security.DESResponseException with this property’s text as the message.

Example

[C#]

public void SetupInputSecurity()
{
 [Code for your License Key here]
 PeterBlum.DES.Security.LogAndRespond vLNR =
 PeterBlum.DES.Security.LogAndRespond.Current;
 vLNR.DefaultTrackAttackArgs.EnableLogging = true;
 vLNR.DefaultTrackAttackArgs.EnableEmail = true;
 vLNR.DefaultTrackAttackArgs.EmailFrom = "You@YourServer.com";
 vLNR.DefaultTrackAttackArgs.EmailTo =
 "You@YourServer.com;Boss@YourServer.com";
 vLNR.DefaultTrackAttackArgs.RedirectURL = "/GoToJail.aspx";

// in this example, LoggingText, EmailSubject, EmailBody and
// Exception Text remain at their defaults
}

[VB]

Public Sub SetupInputSecurity()
 [Code for your License Key here]
 Dim vLNR As PeterBlum.DES.Security.LogAndRespond = _
 PeterBlum.DES.Security.LogAndRespond.Current
 vLNR.DefaultTrackAttackArgs.EnableLogging = True
 vLNR.DefaultTrackAttackArgs.EnableEmail = True
 vLNR.DefaultTrackAttackArgs.EmailFrom = "You@YourServer.com"
 vLNR.DefaultTrackAttackArgs.EmailTo = _
 "You@YourServer.com;Boss@YourServer.com"
 vLNR.DefaultTrackAttackArgs.RedirectURL = "/GoToJail.aspx"
' in this example, LoggingText, EmailSubject, EmailBody, and
' Exception Text remain at their defaults
End Sub

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 23 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Defaults for Tracking Errors and Exceptions
When tracking errors and exceptions, the LogAndRespond class follows rules that you set up in its
DefaultTrackErrorArgs property. By default, all logging and response features are disabled. You set them up in the
SetupInputSecurity() method.

The DefaultTrackErrorArgs property is a PeterBlum.DES.Security.TrackErrorArgs class with the following
properties:

 EnableLogging (boolean) – When true, logging is used. You still must set up other properties to determine how
errors will be logged. There are two types of logging available: the Windows Event Log and text file. It defaults to
false.

 LoggingText (string) – The text to write to either the Windows Event Log or text file. It supports tokens that are
replaced by actual information about the error. The tokens are as follows:

o {IP} – IP address from Request.ServerVariables["REMOTE_ADDR"]. If ServerVariables identifies a proxy
server through the HTTP_VIA and HTTP_X_FORWARDED_FOR variables, they are also embedded into this
information using the format:

REMOTE_ADDR HTTP_VIA=HTTP_VIA HTTP_X_FORWARDED_FOR=HTTP_X_FORWARDED_FOR

210.123.45.1 HTTP_VIA=210.123.45.1 HTTP_X_FORWARDED_FOR=210.123.45.6

For more information on proxy servers and ways hackers can hide behind them, see
http://www.stayinvisible.com/index.pl/anonymity_of_proxy.

o {USERAGENT} – The User Agent describing the browser from
Request.ServerVariables["HTTP_USER_AGENT"].

o {USER} – Logged in user from Context.User.Identity.Name

o {URL} – Complete URL from Request.Url

o {DETAILS} – The text of the error message. When you record an error, you supply this text. When there is an
exception, LogAndRespond.TrackException() builds this text from the Exception object.

o {ERRORCODE} – An error code number that you can supply. You define your own error codes. When the
error code is 0, this appears as “n/a”.

Use the text “\n” to indicate a newline character. While this is C# syntax, VB.net users should use this syntax too.

This property defaults to: “IP Address: {IP}\nUser Agent: {USERAGENT}\nSite User:
{USER}\nURL: {URL}\nError Code: {ERRORCODE}\n{DETAILS}”

 EnableEmail (boolean) – When true, emailing notices of errors is enabled. You must have an SMTP Server set up
and accessible to the System.Web.Mail.SmtpMail object (ASP.NET 1.x) or
System.Net.Mail.SmtpClient object (ASP.NET 2 and higher). It defaults to false.

 EmailFrom (string) – The email address to appear in the From: line of an email. Only one is permitted and it must
be a valid format.

 EmailTo (string) – The email addresses to appear in the To: line of an email. Use a semicolon-delimited list for
multiple addresses. For example: “Jon@mydomain.com;Laura@mydomain.com”

 EmailSubject (string) – The email subject line. It defaults to: “An error has been recorded in your
web application”

 EmailBody (string) – The body of the email. It supports the same tokens as shown in the LoggingText property.

Use the text “\n” to indicate a newline character. While this is C# syntax, VB.net users should use this syntax too.

This property defaults to: “IP Address: {IP}\nUser Agent: {USERAGENT}\nSite User:
{USER}\nURL: {URL}\nError Code: {ERRORCODE}\n{DETAILS}”

 RedirectURL (string) – The URL to a page that should appear when an error is detected. When "", redirection is
disabled. It defaults to "".

http://www.stayinvisible.com/index.pl/anonymity_of_proxy�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebmailsmtpmailclasstopic.asp�
http://msdn2.microsoft.com/library/4971yhhc(en-us,vs.80).aspx�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 24 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

 ExceptionText (string) – When assigned and RedirectURL is not assigned, throw a
PeterBlum.DES.Security.DESResponseException with this property’s text as the message.

Note: This property is not used when handling an exception through LogAndRespond.TrackException().

Example

[C#]

public void SetupInputSecurity()
{
 [Code for your License Key here]
 PeterBlum.DES.Security.LogAndRespond vLNR =
 PeterBlum.DES.Security.LogAndRespond.Current;
 [Code for DefaultTrackAttackArgs is here]
 vLNR.DefaultTrackErrorArgs.EnableLogging = true;
 vLNR.DefaultTrackErrorArgs.EnableEmail = true;
 vLNR.DefaultTrackErrorArgs.EmailFrom = "You@YourServer.com";
 vLNR.DefaultTrackErrorArgs.EmailTo =
 "You@YourServer.com;Boss@YourServer.com";
// in this example, LoggingText, EmailSubject, EmailBody,
// RedirectURL, and ExceptionText remain at their defaults
}

[VB]

Public Sub SetupInputSecurity()
 [Code for your License Key here]
 Dim vLNR As PeterBlum.DES.Security.LogAndRespond = _
 PeterBlum.DES.Security.LogAndRespond.Current
 [Code for DefaultTrackAttackArgs is here]
 vLNR.DefaultTrackErrorArgs.EnableLogging = True
 vLNR.DefaultTrackErrorArgs.EnableEmail = True
 vLNR.DefaultTrackErrorArgs.EmailFrom = "You@YourServer.com"
 vLNR.DefaultTrackErrorArgs.EmailTo = _
 "You@YourServer.com;Boss@YourServer.com"
' in this example, LoggingText, EmailSubject, EmailBody,
' RedirectURL, and ExceptionText remain at their defaults
End Sub

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 25 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Using the Windows Event Log
Note: You must decide if Event logging is right for you. You can skip this section if it is not. It is recommended to set it up as
a backup to other logging systems. If you are using a hosted site’s computer, the event log should be considered off limits. So
use file logging instead.

Note: You can come back to this section before deploying to production.

ALERT: If your server is set up as a Partial Trust Environment, this feature requires the EventLogPermission for your app.
See the section “Installing Into a Partial Trust Environment” in the main Installation Guide.

The Windows Event Log provides an effective tool for collecting information on attacks, errors and exceptions. If your site is
on a hosted server, the Windows Event Log may not be accessible to you. Otherwise, it is recommended that you use it as a
backup to other logging methods in case they fail. It may also be used as a primary logging method.

A Windows Event Log requires that you define an “Event Log Source”. This is a name associated with the application that is
recording into the log. You can put this name into any of the three standard log groups: Application, System, or Security.

1. Select a name for your event log source. A suggested name is “Peter’s Input Security”.

2. Create an event log source.

If your web application has rights to write to the registry (which is not common on production servers), you can use the
System.Diagnostics.EventLog.CreateEventSource() method as shown in the msdn help topic here.
Add the code into your SetupInputSecurity() method.

If your web application does not have rights to write to the registry, you must edit the Windows registry yourself. Here
are the steps:

a. The event log must already be defined in the registry under:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog

b. Use one of these nodes: “Application”, “System”, or “Security”.

c. Under the selected node, create a node with the name of the Source, such as "Peter’s Input Security".

d. Create a String-type key whose name is "EventMessageFile" and value is [Windows
folder]\Microsoft.NET\Framework\[.net version]\EventLogMessages.dll.

For example:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\Application\
Peter’s Input Security\

Key name = EventMessageFile

Value = C:\Windows\Microsoft.NET\Framework\v1.1.4322\EventLogMessages.dll

3. Create the DES_Security_EventLogSource key with a value of the Event Log Source in the <appSettings>
section of the web.config file. For example:

<add key="DES_Security_EventLogSource" value="Peters Input Security" />

You have the option of setting this programmatically during application startup. Assign your path to this static/shared
property: PeterBlum.DES.Security.LogAndRespond.EventLogSource. It accepts a string.

PeterBlum.DES.Security.LogAndRespond.EventLogSource =
 "Peters Input Security"

4. Within SetupInputSecurity(), call the LogAndRespond.UseEventLog()method with no parameters. It
returns false if DES_Security_EventLogSource was not found in the web.config file. It will throw an
exception if it could not create an entry in the event log. By throwing an exception as the application starts up, you will
immediately know about a setup problem.

5. By default, the Windows Event Log will be used for all attacks, exceptions, and errors. If you want it to be a backup log
when the text file log or email fail, set the LogAndRespond.EventLogIsBackup property to true.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDiagnosticsEventLogClassCreateEventSourceTopic.asp�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 26 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Example

[C#]

public void SetupInputSecurity()
{
 [Code for your License Key here]
 PeterBlum.DES.Security.LogAndRespond vLNR =
 PeterBlum.DES.Security.LogAndRespond.Current;
 [Code for DefaultTrackAttackArgs is here]
 vLNR.DefaultTrackAttackArgs.EnableLogging = true;
 [Code for DefaultTrackErrorArgs is here]
 vLNR.DefaultTrackErrorArgs.EnableLogging = true;
 if (!vLNR.UseEventLog())
 throw new Exception("Need to setup the DES_Security_EventLogSource in web.config.");
 vLNR.EventLogIsBackup = true; // optional
}

[VB]

Public Sub SetupInputSecurity()
 [Code for your License Key here]
 Dim vLNR As PeterBlum.DES.Security.LogAndRespond = _
 PeterBlum.DES.Security.LogAndRespond.Current
 [Code for DefaultTrackAttackArgs is here]
 vLNR.DefaultTrackAttackArgs.EnableLogging = True
 [Code for DefaultTrackErrorArgs is here]
 vLNR.DefaultTrackErrorArgs.EnableLogging = True
 If Not vLNR.UseEventLog() Then
 Throw New Exception("Need to setup the DES_Security_EventLogSource in web.config.")
 End If
 vLNR.EventLogIsBackup = True ' optional
End Sub

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 27 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Using Text File Logging
There are several benefits to logging to a text file as compared to the Windows Event Log:

 Works on a hosted server environment

 Grouping by date as Peter's Input Security creates a new file for each date

 Ability to archive files and delete individual dates

Note: You must decide if Text File logging is right for you. You can skip this section if it is not.

Note: You can come back to this section before deploying to production.

Peter's Input Security needs a folder where it will write the log files. These steps will show you how to set up the folder.

1. Select a location on the server where the files will be written.

2. Create a folder for logging in that location.

3. If the folder is accessible through IIS, use IIS to remove any rights to access logs through the web. Specifically, there
should be no permissions to Read or Write.

4. The folder must have NT permissions on the NT account used by ASP.NET for: create files, delete files, read, and write.

5. Establish one of these keys in the <appSettings> section of web.config, identifying the path to the folder.

<add key="DES_Security_LogVirtualPath" value="[virtual path]" />

<add key="DES_Security_LogFilePath" value="[actual path]" />

 Use DES_Security_LogVirtualPath when the folder is in the web application. A virtual path is a URL from
the root of the domain folder to the logging folder. You can use the tilde (~) as the first character to indicate the web
application.

For example, if your domain is http://localhost, your web application is http://localhost/mywebapp and your logging
folder is http://localhost/mywebapp/errorlogs, use this:

<add key="DES_Security_LogVirtualPath" value="~/ErrorLogs" />

You have the option of setting this programmatically during application startup. Assign your path to this
static/shared property: PeterBlum.DES.Security.LogAndRespond.LogVirtualPath. It accepts a string.

PeterBlum.DES.Security.LogAndRespond.LogVirtualPath = "~/ErrorLogs"

 Use DES_Security_LogFilePath when the folder is outside of the web application. If you have set up a
shared folder, use a UNC name. Otherwise use a full file path.

Here are examples of each:

<add key="DES_Security_LogFilePath" value="\\mycomputername\ErrorLogs" />

<add key="DES_Security_LogFilePath"
 value="C:\documents and settings\all users\ErrorLogs" />

You have the option of setting this programmatically during application startup. Assign your path to this static/shared
property: PeterBlum.DES.Security.LogAndRespond.LogFilePath. It accepts a string.

PeterBlum.DES.Security.LogAndRespond.LogFilePath =
 "\\mycomputername\ErrorLogs"

6. Within SetupInputSecurity(), call the LogAndRespond.UseFileLog()method with no parameters. It
returns false if DES_Security_LogVirtualPath and DES_Security_LogFilePath did not supply any
text. It will throw an exception if it could not create a file in the logging folder. By throwing an exception as the
application starts up, you will immediately know about a setup problem.

7. Within the SetupInputSecurity() method, confirm that these properties on
LogAndRespond.DefaultTrackAttackArgs and LogAndRespond.DefaultTrackErrorArgs have been set.

 EnableLogging – Set to true.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 28 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

 LoggingText – This has a default that you can change.

Example

[C#]

public void SetupInputSecurity()
{
 [Code for your License Key here]
 PeterBlum.DES.Security.LogAndRespond vLNR =
 PeterBlum.DES.Security.LogAndRespond.Current;
 [Code for DefaultTrackAttackArgs is here]
 vLNR.DefaultTrackAttackArgs.EnableLogging = true;
 [Code for DefaultTrackErrorArgs is here]
 vLNR.DefaultTrackErrorArgs.EnableLogging = true;
 vLNR.UseEventLog();
 if (!vLNR.UseFileLog())
 throw new Exception("Need to setup the DES_Security_LogVirtualPath
 or DES_Security_LogFilePath key in web.config.");
}

[VB]

Public Sub SetupInputSecurity()
 [Code for your License Key here]
 Dim vLNR As PeterBlum.DES.Security.LogAndRespond = _
 PeterBlum.DES.Security.LogAndRespond.Current
 [Code for DefaultTrackAttackArgs is here]
 vLNR.DefaultTrackAttackArgs.EnableLogging = True
 [Code for DefaultTrackErrorArgs is here]
 vLNR.DefaultTrackErrorArgs.EnableLogging = True
 vLNR.UseEventLog()
 If Not vLNR.UseFileLog() Then
 Throw New Exception("Need to setup the DES_Security_LogVirtualPath
 or DES_Security_LogFilePath key in web.config.");
 End If
End Sub

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 29 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Using Email
Note: You must decide if Emailing is right for you. You can skip this section if it is not.

Note: You can come back to this section before deploying to production.

Email requires a correctly setup SMTP server to which the System.Net.Mail.SmtpClient object (ASP.NET 2 and
higher) or System.Web.Mail.SmtpMail object (ASP.NET 1.x) properly connects. When tracking attacks, you have
options to avoid sending emails on every attack.

1. Confirm that you have a working SMTP server that is accessible from the web server. The web server computer should
be configured with the correct account information.

Note: PeterBlum.com cannot provide technical support on getting ASP.NET to communicate with the STMP Server.
Peter's Input Security uses the System.Web.Mail.SmtpMail or System.Net.Mail.SmtpClient object, just like you would if
you wanted to send email from your code.

2. Make sure the Stmp class is configured with the server name and any other attributes.

ASP.NET 2 and higher Users

The System.Net.Mail.SmtpClient class is configured either in machine.config or web.config using this
basic syntax:

<configuration>
 <system.net>
 <mailSettings>
 <smtp>
 <network host="email server" />
 </smtp>
 </mailSettings>
 </system.net>
</configuration>

Set the host attribute to the name of the server, such as “mail.myserver.com”.

There are other attributes available to the <network> tag, such as username, password, and port. Please refer to the .net
documentation if you need to use any of them.

ASP.NET 1.x Users

Within the SetupInputSecurity() method, set the SmtpMail.SmtpServer property to the desired server if
needed.

Note: If you are using SmtpMail for other things, you probably have set up SmtpMail.SmtpServer in Application_Start().
You do not need to relocate or modify it.

3. Within the SetupInputSecurity() method, confirm that these properties on
LogAndRespond.DefaultTrackAttackArgs and LogAndRespond.DefaultTrackErrorArgs have been set.

 EnableEmail – Set to true.

 EmailFrom and EmailTo – Set to the appropriate email addresses.

 EmailSubject and EmailBody – These have defaults that you can change.

4. If you want to avoid emails on every attack from a specific IP Address, set these properties within the
SetupInputSecurity() method.

 FirstEmailAfterThisManyAttacks (integer) – Determines how many attacks within a period before sending the
first email. Minimum value of 1. It defaults to 1.

The “attack period” is a time limit between two separate attacks from the same IP Address and is set with the
LogAndRespond.AttackTimeOut property, described elsewhere.

 MoreEmailsAfterThisManyAttacks (integer) – After the first email has been sent, you can have emails sent on
later attacks. When 0, no further emails are sent. When 1, emails are sent with every attack. When higher than 1, it

http://msdn2.microsoft.com/library/4971yhhc(en-us,vs.80).aspx�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebmailsmtpmailclasstopic.asp�
http://msdn2.microsoft.com/library/4971yhhc(en-us,vs.80).aspx�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebMailSmtpMailClassSmtpServerTopic.asp�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 30 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

waits for this many attacks before emailing again. For example, if this is assigned to 3, it will email you on the 3rd,
6th, 9th, etc attack following the first attack. When the attack period is exceeded, it resets counting for emails and
will use FirstEmailAfterThisManyAttacks on the next attack.

Example

[C#]

public void SetupInputSecurity()
{
 [Code for your License Key here]
 PeterBlum.DES.Security.LogAndRespond vLNR =
 PeterBlum.DES.Security.LogAndRespond.Current;
 [Code for DefaultTrackAttackArgs is here]
 vLNR.DefaultTrackAttackArgs.EnableEmail = true;
 vLNR.DefaultTrackAttackArgs.EmailFrom = "me@mydomain.com";
 vLNR.DefaultTrackAttackArgs.EnableEmail = "me@mydomain.com;boss@mydomain.com";
 [Code for DefaultTrackErrorArgs is here]
 vLNR.DefaultTrackErrorArgs.EnableEmail = true;
 vLNR.DefaultTrackErrorArgs.EmailFrom = "me@mydomain.com";
 vLNR.DefaultTrackErrorArgs.EnableEmail = "me@mydomain.com;boss@mydomain.com";
 vLNR.UseEventLog();
 vLNR.UseFileLog();
 System.Web.Mail.SmtpMail.SmtpServer = "mail.mydomain.com"; //ASP.NET 1.x ONLY!
 vLNR.FirstEmailAfterThisManyAttacks = 3;
 vLNR.MoreEmailsAfterThisManyAttacks = 10;
}

[VB]

Public Sub SetupInputSecurity()
 [Code for your License Key here]
 Dim vLNR As PeterBlum.DES.Security.LogAndRespond = _
 PeterBlum.DES.Security.LogAndRespond.Current
 [Code for DefaultTrackAttackArgs is here]
 vLNR.DefaultTrackAttackArgs.EnableEmail = True
 vLNR.DefaultTrackAttackArgs.EmailFrom = "me@mydomain.com"
 vLNR.DefaultTrackAttackArgs.EnableEmail = "me@mydomain.com;boss@mydomain.com"
 [Code for DefaultTrackErrorArgs is here]
 vLNR.DefaultTrackErrorArgs.EnableEmail = True
 vLNR.DefaultTrackErrorArgs.EmailFrom = "me@mydomain.com"
 vLNR.DefaultTrackErrorArgs.EnableEmail = "me@mydomain.com;boss@mydomain.com"
 vLNR.UseEventLog()
 vLNR.UseFileLog()
 System.Web.Mail.SmtpMail.SmtpServer = "mail.mydomain.com" 'ASP.NET 1.x ONLY!
 vLNR.FirstEmailAfterThisManyAttacks = 3
 vLNR.MoreEmailsAfterThisManyAttacks = 10
End Sub

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 31 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Using Your Own Logging Code
Peter's Input Security can pass all of the details about an attack, error, or exception to your own logging code through event
handler methods. To log attacks, attach an event hander method to LogAndRespond.OnLogAttack. To log errors and
exceptions, attach an event handler method to LogAndRespond.OnLogError.

Use these features when you have another solution for logging, such as a database. You can even use it to substitute for the
emailing or text file systems supplied by the Log And Respond Engine, simply by defining your own code and disabling the
feature in LogAndRespond.DefaultTrackAttackArgs and LogAndRespond.DefaultTrackErrorArgs.

Note: You can come back to this section before deploying to production.

You have already established two event handler methods in Global.asax. They are LogAttacks() and LogErrors().
Here are the steps to set these methods up.

1. Within the SetupInputSecurity() method, locate the commented-out code that sets OnLogAttack and
OnLogErrors to the LogAttacks() and LogErrors() methods.

2. Remove the comments on those lines.

3. Locate the LogAttacks() method below the SetupInputSecurity() method.

4. Add your own code to LogAttacks(). The parameters are:

 pPage – The Page object that is associated with this error.

 pAttackDetails – Describes the attack in detail. See the topic “AttackDetails Class” in the User’s Guide.

 pIPInfo – The IPAddressInfo class describes the IP Address that requested the page along with the total attacks
associated with this IP Address. Its properties are:

o IPAddress (string) – The IP address from Request.ServerVariables["REMOTE_ADDR"]

o TotalAttacks (integer) – The total attacks recorded since the web application started up

o AttacksInPeriod (integer) – The total attacks for the period defined in LogAndRespond.AttackTimeOut.

 pArgs – Describes the TrackAttackArgs in use. They have the same properties as shown in
LogAndRespond.DefaultTrackAttackArgs.

5. Locate the LogErrors() method below the SetupInputSecurity() method.

6. Add your own code to LogErrors(). The parameters are:

 pPage – The Page object that is associated with this error.

 pErrorDetails– A description of the error.

 pErrorCode – An error code for the error. If 0, no error code was defined.

 pArgs – Describes the TrackErrorArgs in use. They have the same properties as shown in
LogAndRespond.DefaultTrackErrorArgs.

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 32 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Example

[C#]

public void SetupInputSecurity()
{
 [Code for your License Key here]
 PeterBlum.DES.Security.LogAndRespond vLNR =
 PeterBlum.DES.Security.LogAndRespond.Current;
 [Code for DefaultTrackAttackArgs is here]
 [Code for DefaultTrackErrorArgs is here]
 vLNR.UseEventLog();
 vLNR.UseFileLog();
 [Code for email]
 vLNR.OnLogAttack = new PeterBlum.DES.Security.LogAttackEventHandler(LogAttacks);
 vLNR.OnLogError = new PeterBlum.DES.Security.LogErrorEventHandler(LogErrors);
}

public void LogAttacks(System.Web.UI.Page pPage,
PeterBlum.DES.Security.AttackDetails pAttackDetails,
PeterBlum.DES.Security.IPAddressInfo pIPInfo,
PeterBlum.DES.Security.TrackAttackArgs pArgs)

{
 // Add your code here
} // LogAttacks

public void LogErrors(System.Web.UI.Page pPage, string pErrorDetails,
 int pErrorCode, PeterBlum.DES.Security.TrackErrorArgs pArgs)
{
 // Add your code here
} // LogErrors

[VB]

Public Sub SetupInputSecurity()
 [Code for your License Key here]
 Dim vLNR As PeterBlum.DES.Security.LogAndRespond = _
 PeterBlum.DES.Security.LogAndRespond.Current
 [Code for DefaultTrackAttackArgs is here]
 [Code for DefaultTrackErrorArgs is here]
 vLNR.UseEventLog()
 vLNR.UseFileLog()
 [Code for email]
 vLNR.OnLogAttack = New PeterBlum.DES.Security.LogAttackEventHandler(_
 AddressOf LogAttacks)
 vLNR.OnLogError = New PeterBlum.DES.Security.LogErrorEventHandler(_
 AddressOf LogErrors)
End Sub

Public Sub LogAttacks(ByVal pPage As System.Web.UI.Page, _

ByVal pAttackDetails As PeterBlum.DES.Security.AttackDetails, _
 ByVal pIPInfo As PeterBlum.DES.Security.IPAddressInfo, _

ByVal pArgs As PeterBlum.DES.Security.TrackAttackArgs)
 ' Add your code here
End Sub ' LogAttacks

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 33 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Public Sub LogErrors(ByVal pPage As System.Web.UI.Page, _
ByVal pErrorDetails As String, _

 ByVal pErrorCode As Integer, _
ByVal pArgs As PeterBlum.DES.Security.TrackErrorArgs)

 ' Add your code here
End Sub ' LogErrors

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 34 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Customize Logging and Response By Attack Type
When LogAndRespond records an attack, it determines the logging and response actions from the
LogAndRespond.DefaultTrackAttackArgs object. Suppose you want to change these actions based on the type of attack.
Here are some examples:

 Send emails to different recipients. For a SQL Injection attack, notify the Database Administrator. For others, notify the
Web Master.

 Respond differently. Send SQL Injection attacks to one page; Script Injections to another.

Use the LogAndRespond.CustomizeTrackAttackArgs event handler to preprocess the TrackAttackArgs object. It
gives you all of the information about the attack and allows you to modify the TrackAttackArgs as needed.

The text you added to Global.asax already defines a method, CustomizeArgs(), and attaches it to the
LogAndRespond.CustomizeTrackAttackArgs event.

What follows is the definition of the method and an example of how to modify it.

Note: You will probably leave it at its default for now and return here to customize it as needed.

Definition: PeterBlum.DES.Security.CustomTrackAttackArgsHandler Delegate

[C#]

delegate public void CustomizeTrackAttackArgsHandler(
ref PeterBlum.DES.Security.AttackType pAttackType,

 ref string pAttackTypeDescription,
ref PeterBlum.DES.Security.AttackInputType pAttackInputType,

 ref string pAttackInputTypeDescription,
ref string pErrorDetails,

 PeterBlum.DES.Security.TrackAttackArgs pArgs)

[VB]

Delegate Public Sub CustomizeTrackAttackArgsHandler(_
ByRef pAttackType As PeterBlum.DES.Security.AttackType, _

 ByRef pAttackTypeDescription As String, _
 ByRef pAttackInputType As PeterBlum.DES.Security.AttackInputType, _
 ByRef pAttackInputTypeDescription As String, _

ByRef pErrorDetails As String, _
 ByVal pArgs As PeterBlum.DES.Security.TrackAttackArgs)

Parameters

pAttackType

The type of attack. It will be one of these values from the enumerated type
PeterBlum.DES.Security.AttackType:

 Unknown

 SQLInjection

 ScriptInjection

 IllegalValue

pAttackTypeDescription

A description of the attack type. This text will appear in the {ATTACKTYPE} token of pArgs.LoggingText and
pArgs.EmailBody.

pAttackInputType

The type of input that was attacked. It will be one of these values from the enumerated type
PeterBlum.DES.Security.AttackInputType:

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 35 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

 Unknown

 Field

 HiddenField

 QueryString

 Cookie

pAttackInputTypeDescription

A description of the input type. This text will appear in the {INPUTTYPE} token of pArgs.LoggingText and
pArgs.EmailBody.

pErrorDetails

Textual description of what was detected to indicate an attack. This text will appear in the {DETAILS} token of
pArgs.LoggingText and pArgs.EmailBody.

pArgs

The PeterBlum.DES.Security.TrackAttackArgs object that will determine the logging and response
actions that follow. You will usually modify the properties of this object. The defaults come from
LogAndRespond.DefaultTrackAttackArgs. See “Defaults for Tracking Attacks”.

Example

This example will change the email address for SQLInjection attacks and the RedirectURL for an attack on visible fields.

[C#]

public void CustomizeArgs(
 ref PeterBlum.DES.Security.AttackType pAttackType,
 ref string pAttackTypeDescription,
 ref PeterBlum.DES.Security.AttackInputType pAttackInputType,
 ref string pAttackInputTypeDescription,
 ref string pErrorDetails,
 PeterBlum.DES.Security.TrackAttackArgs pArgs)
{
 if (pAttackType == PeterBlum.DES.Security.AttackType.SQLInjection)
 pArgs.EmailTo = "dave_DBA@mydomain.com";
 if (pAttackInputType == PeterBlum.DES.Security.AttackInputType.Field)
 pArgs.RedirectURL = "/MyErrors/VisibleFieldResponse.aspx";
}

[VB]

Public Sub CustomizeArgs(_
 ByRef pAttackType As PeterBlum.DES.Security.AttackType, _
 ByRef pAttackTypeDescription As String, _
 ByRef pAttackInputType As PeterBlum.DES.Security.AttackInputType, _
 ByRef pAttackInputTypeDescription As String, _
 ByRef pErrorDetails As String, _
 ByVal pArgs As PeterBlum.DES.Security.TrackAttackArgs)

 If pAttackType = PeterBlum.DES.Security.AttackType.SQLInjection Then
 pArgs.EmailTo = "dave_DBA@mydomain.com"
 End If
 If pAttackInputType = PeterBlum.DES.Security.AttackInputType.Field Then
 pArgs.RedirectURL = "/MyErrors/VisibleFieldResponse.aspx"
 End If
End Sub

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 36 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Securing The Web Application
This section installs several features that experts recommend for a secure site.

Click on any of these topics to jump to them:

 Showing User Friendly Pages Instead of Exceptions

 Logging Exceptions

 Establishing Character Encoding to Limit Script Injection

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 37 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Showing User Friendly Pages Instead of Exceptions
Error messages from exceptions are one of the most useful tools for hackers to make progress. For example, when they create
a SQL Injection attack on a field, if their text manages to get to the database, most of the time the database will find their text
is invalid and throw an exception that details the exact problem. If that exception is provided to the user, the hacker will
know more about how to correct their SQL to get what they want.

As a rule, you should log exceptions for your own use and give the user friendly but nonspecific errors.

This section helps you set up a user friendly page and hook it into ASP.NET’s own mechanism for showing pages instead of
errors.

The next section helps you use Peter's Input Security’s LogAndRespond class to log exceptions and select alternative pages
for different errors.

ASP.NET has already built a mechanism to block showing errors. These steps will make sure it is set up:

1. Open the web.config file and locate the section <customErrors> within <system.web>. Click here for details
on this section of the web.config file.

2. If it is set up, it will have the attribute Mode set to “On” or “RemoteOnly”. It will have the defaultRedirect
attribute set to a URL.

3. If the Mode and defaultRedirect attributes are set up correctly, confirm that the URL in defaultRedirect points to an
existing web page. If it does, you can skip to step 6.

4. Create a web form (aspx) file to use as the default error page. The information on this page should never tell you the
exact error encountered. A friendly message like this will do “We are sorry. You have encountered an error on this site.
Use the Back button on your browser to return to the previous page.”

Note: Getting the page right may take some time. You can build a basic page now and return later to enhance it.

Suggestion: You may create several web forms for the different types of errors. Consider making a folder in your web
application for all of these web forms.

5. Set up the <customErrors> section to use your new web form. Click here for details.

This is an example of the <customErrors> section:

<configuration>
 <system.web>
 <customErrors defaultRedirect="/ErrorPages/Default.aspx"
 mode="RemoteOnly">
 </customErrors>
 </system.web>
</configuration>

6. Create any additional error pages as you think of them. They will be used in the Application_Error() method as
described in the following section. Some examples:

 Email server is down. Please try again shortly.

 File cannot be downloaded due to an issue on the server. Please contact the web master. (Use this when
downloading a file and you have a file system error that prevents saving it. Hide the details.)

 Site is temporarily down for maintenance. Please try again shortly. (Use this kind of message to handle errors when
the database server is shut down. It hides the real reason: the user doesn’t need to know.)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfCustomerrorsSection.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfCustomerrorsSection.asp�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 38 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Logging Exceptions
As a rule, you should log exceptions for your own use and give the user friendly but nonspecific errors. The
LogAndRespond class helps you do this. Use it’s TrackException() method when you catch an exception. It will
take logging and response actions based on the LogAndRespond.DefaultTrackErrorArgs object.

There are three places you can use TrackException().

 Within code that throws exceptions. You will write try…catch statements and use TrackException() within the
catch statement. This usage is covered in the User’s Guide.

 On an individual page or user control. You will use the Error event of the Page class. This usage is covered in the
“Track exception on the page in the Page.Error event” section of the User’s Guide.

 For all unhandled exceptions throughout your web application. This usage is covered here.

1. Within the Global.asax file, create or modify the Application_Error() method to call TrackException().

Use the pRedirectURL parameter of TrackException() to select a page with a user friendly error message. By
default, use the error page you developed for the <customErrors> section of the web.config file in the previous
section.

An example follows the definition of TrackException().

Note: Application_Error() will be called even if there is an exception within Application_Start().
SetupInputSecurity() has been set up to throw exceptions that report a bad configuration. The
TrackException() method will not log exceptions until SetupInputSecurity() has successfully run. Instead, the
exceptions will appear on the browser.

Definition: PeterBlum.DES.Security.LogAndRespond.TrackException

[C#]

public void TrackException(
string pRedirectURL,

 bool pStopException)

[VB]

Public Sub TrackException(_
ByVal pRedirectURL As String, _

 ByVal pStopException As Boolean)

Parameters

pRedirectURL

Determines the URL to redirect to another page. Often you will use different URLs for different types of exceptions.
When “”, the value from LogAndRespond.DefaultTrackErrorArgs.RedirectURL is used.

WARNING: It is important not to give the hacker any idea that there was a database exception. If you capture any
database exceptions, avoid naming the page file in a way that gives the hacker any insight. Even if the page name
differs from others, the hacker can tell that there was an error and that is enough to identify a hole in your security.

pStopException

Determines if the exception is stopped or passed back to show to the user. Set it to true to stop exceptions. This is
strongly recommended because the goal is to prevent showing the error. It calls
HttpContext.Current.Server.ClearError() to stop the exception.

This method does not get passed the Exception object. That’s because Application_Error() does not supply one.
Instead, it internally gets the current exception through HttpContext.Current.Server.GetLastError(). You
can also use that method to help you customize the pRedirectURL parameter.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuitemplatecontrolclasserrortopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassGetLastErrorTopic.asp�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 39 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Example

When a System.IO.FileNotFoundException is intercepted, redirect to "/MyErrors/FileIOError.aspx”. This example
assumes that the default error page URL has been specified in LogAndRespond.DefaultTrackErrorArgs.RedirectURL. In
your case, if it has not, assign it in the first line.

 [C#]

protected void Application_Error(Object sender, EventArgs e)
{
 string vRedirectURL = ""; // default
 Exception vException = HttpContext.Current.Server.GetLastError();
 if (vException is System.IO.FileNotFoundException)
 vRedirectURL = "/MyErrors/FileIOError.aspx";
 PeterBlum.DES.Security.LogAndRespond.Current.TrackException(vRedirectURL, true);
}

[VB]

Protected Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 Dim vRedirectURL As String = "" ' default
 Dim vException As Exception = HttpContext.Current.Server.GetLastError()
 If TypeOf vException Is System.IO.FileNotFoundException Then
 vRedirectURL = "/MyErrors/FileIOError.aspx"
 End If
 PeterBlum.DES.Security.LogAndRespond.Current.TrackException(vRedirectURL, True)
End Sub

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 40 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Establishing Character Encoding to Limit Script Injection
One common technique to limit the types of script injection attacks is to define a character encoding for the web form. There
are two parts to this process: settings in the web.config file and settings on each web form. This section will cover the
web.config file. The User’s Guide will describe how to set it on each web form in the section “Securing a Page”.

1. Determine the character encoding for your page or site.

In Western cultures, the ISO-8859-1 is a recommended choice. It imposes a more restrictive character set than some
others, like UTF-8.

2. Assign the encoding to the <globalization> section of the web.config file. See this topic from Microsoft:
Selecting an Encoding for Web Forms Globalization.

Example of encoding in web.config:

<configuration>
 <system.web>
 <globalization
 requestEncoding="ISO-8859-1"
 responseEncoding="ISO-8859-1"
 />
 </system.web>
</configuration>

http://cyberforge.com/weblog/aniltj/archive/2004/05/03/494.aspx�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbtskselectingencodingforwebformsglobalization.asp�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 41 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Securing Each Page
It’s time to move into the Input Security User’s Guide. See the section “Securing A Page”. If you haven’t already read
the “Overview”, “SQL Injection Primer”, “Script Injection Primer” and “Input Tampering Primer” sections of the User’s
Guide, you may want to do this before attempting to design security into your pages.

Remember: To beat your opponent, you must think like your opponent!

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 42 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Troubleshooting
Here are some issues that you may run into. Remember that technical support is available from support@PeterBlum.com. We
encourage you to use this knowledge base first.

This guide contains problems specific to the Peter’s Input Security module. Please see the “Troubleshooting” section of the
General Features Guide for an extensive list of other topics including “Handling JavaScript Errors” and “Common Error
Messages”.

Application_Start() does not appear to be running

The Application_Start() method of the Global class of Global.asax is very important to any web application. It is
designed to initialize global values of a web application. Yet PeterBlum.com has experienced several customers who cannot
get it to run.

Peter's Input Security has been coded with a backup system that detects SetupInputSecurity() has not run as pages
use its features. If it can, it calls SetupInputSecurity() and continues with normal activity. If it cannot find the
SetupInputSecurity() method, it will throw an exception.

First confirm that the method is present, correctly spelled and using the exact text case. If it is not, fix it and try again.
Otherwise, try the following.

Confirm the problem

1. Confirm that the Application_Start() method is correctly defined.

[C#]

protected void Application_Start(Object sender, EventArgs e)

[VB]

Protected Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

2. Confirm that it is not running. Simply throw an exception from within Application_Start(). Compile and run
with this code in Application_Start(). See if you get an exception page or not.

[C#]

throw new Exception("Application_Start running");

 [VB]

Throw New Exception("Application_Start running")

Implement a Solution (Workaround)

If you can determine how to fix the problem, do so as Application_Start() greatly benefits you. However, Peter's
Input Security provides a workaround designed for its own needs. You have already copied text into your Global.asax file.
It includes the static/shared method SetupInputSecurityFromPage(), which is used in this situation.

Assuming that you do not get the exception, take these steps:

1. Does Global.asax have an Application_OnStart() method? Does it work? If so, move the call to
SetupInputSecurity() into Application_OnStart(). If this test works, you are done.

2. Within each web form, add this line to the beginning of the Page_Load() method:

ASP.NET 1.1 and higher users

ASP.global_asax.SetupInputSecurityFromPage()

ASP.NET 1.0 CodeBehind users

Global.SetupInputSecurityFromPage()

3. Recompile any code behind files and test.

mailto:support@PeterBlum.com�

Peter’s Input Security Installation Guide a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 43 of 43
http://www.PeterBlum.com For technical support and other assistance, see page 5

Peter's Input Security reports a file rights error

Peter's Input Security creates files in two places: a reports folder for the Security Analysis Report and a log folder for logging
to file. If you get an exception indicating a file rights problem, change the folder’s sharing rights.

 With NT, 2000, allow the ASP.NET User Account to create, delete, read and write.

 With XP, set up Sharing with “Allow network users to change my files”

PeterBlum.com Technical Support cannot additional provide user education on setting up sharing rights. If you think that you
have the rights correct, create a web form that creates a file in the same folder to test. Here is some code to make it easy. This
code belongs in the Page_Load() method. This web form needs a reference to System.IO. Supply the path in
vTempFile.

[C#]

string vTempFile = "FILE PATH HERE\Temp.txt";
try
{
 if (File.Exists(vTempFile))
 File.Delete(vTempFile);
 StreamWriter vTest = File.CreateText(vTempFile);
 try
 {
 vTest.Write("test");
 }
 finally
 {
 vTest.Close();
 }
 File.Delete(vTempFile);
}
catch (Exception)
{
}

[VB]

Dim vTempFile As String = "FILE PATH HERE\Temp.txt"
Try
 If File.Exists(vTempFile) Then
 File.Delete(vTempFile)
 End If
 Dim vTest As StreamWriter = File.CreateText(vTempFile)
 Try
 vTest.Write("test")
 Finally
 vTest.Close()
 End Try
 File.Delete(vTempFile)
Catch e As Exception
End Try

	PeterBlum.com and Security
	What This Software Will and Will Not Do
	License Information
	Platform Support

	Technical Support and Other Assistance
	Installation and User’s Guides
	PeterBlum.Com MessageBoard
	Getting Product Updates
	Technical Support

	Overview
	Terminology

	Adding Peter’s Input Security to a Web Application
	Add Code Into Global.asax
	Configure for Your Database
	Configure for Reporting
	Set up the Reporting Folder
	Restricting Server Resource Usage
	Restrict by Server Name
	Restrict Users by IP Address
	Restrict to specific pages or folders
	Letting individual users control pages that output reports
	Stop reporting after a certain date

	Configure for Logging
	Steps to Configure For Logging
	Defaults for Tracking Attacks
	Defaults for Tracking Errors and Exceptions
	Using the Windows Event Log
	Using Text File Logging
	Using Email
	ASP.NET 2 and higher Users
	ASP.NET 1.x Users

	Using Your Own Logging Code
	Customize Logging and Response By Attack Type
	Definition: PeterBlum.DES.Security.CustomTrackAttackArgsHandler Delegate

	Securing The Web Application
	Showing User Friendly Pages Instead of Exceptions
	Logging Exceptions
	Definition: PeterBlum.DES.Security.LogAndRespond.TrackException
	Parameters

	Establishing Character Encoding to Limit Script Injection

	Securing Each Page
	Remember: To beat your opponent, you must think like your opponent!

	Troubleshooting
	Confirm the problem
	Implement a Solution (Workaround)
	ASP.NET 1.1 and higher users
	ASP.NET 1.0 CodeBehind users

	Word Bookmarks
	TableOfContents
	DefWebAppRoot
	DefVAMFolder
	DefaultTrackAttackArgs
	DefaultTrackErrorArgs

